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Abstract. We analyze the quantum fluctuations of the degenerate optical parametric oscillator close to an
instability for the formation of a square pattern. While strong correlations between the fluctuations of the
signal modes emitted at the critical wave number and with opposite wave vector are present both below
and above threshold, no features signaling the square character of the pattern forming above threshold
have been identified below threshold in the spatio-temporal second-order coherence. We also explore in
which regimes a reduced few mode model gives meaningful results.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 42.65.Sf Dynamics of
nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal
dynamics

1 Introduction

Patterns in extended nonlinear optical systems have the
interesting feature of displaying noteworthy quantum as-
pects at room temperature, which is often not the case
with more traditional fields associated with spontaneous
spatial structures such as hydrodynamics, chemical reac-
tions or biology. These quantum aspects, which arise from
the quantum correlation of the spatial modes that form
the pattern, have attracted the interest of researchers dur-
ing the last years (see for example [1–14] and Ref. [15] for a
review on optical pattern formation and its quantum fluc-
tuations). For example, quantum features are found both
below and above the instability threshold for pattern for-
mation in optical parametric oscillators (OPO). In partic-
ular it has been shown that below, but close to, threshold,
the quantum noise can excite the weakly damped spa-
tial modes that will become unstable at threshold [1–3].
In an isotropic system with two spatial dimensions, the
spectrum of fluctuations below threshold has a radially
symmetric distribution with maxima on a ring of radius
equal to the wave-number of the pattern formed just above
threshold. Therefore, the spectrum of fluctuations below
the instability threshold is considered to be a noisy precur-
sor [16] that anticipates the above-threshold pattern wave-
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number. Furthermore, in optical systems where a stripe
pattern is formed, strong correlations exist, even at quan-
tum level, between the fluctuations in the number of pho-
tons emitted at the critical wave-number (|k| = kc) and
opposite wave-vectors. This is an effect of the parametric
coupling associated with transverse momentum conserva-
tion. It has been interpreted as a below-threshold signal
of the form of the pattern that will arise above threshold,
namely a stripe pattern. The fact that the correlations
are associated with quantum entanglement among spatial
modes has originated the term “quantum image” [1].

The most common pattern to appear above thresh-
old in a degenerate OPO (DOPO) is a stripe pattern [17]
with a far field formed by two off axis beams. These
beams correspond to the simultaneous emission of twin
photons with a high degree of quantum correlation of
their fluctuations. High above threshold a spatially dis-
ordered structure emerges in which kc plays no particular
role. Still, strong quantum correlations between pair of
opposite wavevectors persist in a one dimensional geome-
try [18]. In the non-degenerate OPO quantum correlations
are also found between the off axis emissions of the signal
and idler field modes [9].

A semi-classical analysis of pattern formation in the
DOPO [19,20] shows that for specific values of the cav-
ity detuning parameters, a square pattern, instead of a
roll pattern, emerges. In this paper we study the quantum
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fluctuations and correlations at the onset of the instability
that leads to the formation of a square pattern in a de-
generate OPO. In particular we investigate weather below
threshold there is any correlation in the fluctuations of the
far field modes with different transverse wave vectors that
can be interpreted as an anticipation of the square pattern
that appears above threshold. Since we are interested in
calculating field intensity correlation between two differ-
ent space-time points, the appropriate quantity to be used
is the second order quantum correlation function g2 (see,
for example, Ref. [22]).

We show that, below threshold, the g2 function indi-
cates strong correlations between the fluctuations of the
signal critical modes with opposite wave vectors, as in
the case of stripe pattern formation. However in a con-
tinuous model and within our rather high numerical ac-
curacy, no correlation is found below threshold between
the fluctuations of signal critical modes with wave vectors
forming an angle of π/2. These π/2-angle correlations are
present above threshold, as a consequence of the square
form of the pattern. Its presence below threshold could
have been interpreted as a quantum image of the square
pattern to emerge after the onset of the instability. There-
fore below threshold the spectrum of fluctuations provides
information about the pattern wave number (noisy pre-
cursor in the classical sense) but does not seem to reveal
or anticipate the square shape which will be formed above
threshold. Furthermore, particular caution has to be taken
when interpreting g2 measurements in a truncated model
obtained by projecting the stochastic dynamics on just
4 modes corresponding to the square components. While
this model gives meaningful results for the dynamics above
threshold, its results below threshold are not valid. In par-
ticular, we show that very close but still below threshold
π/2-angle anti-correlations in the g2 exist for this pro-
jected model. This apparently spurious result is due to
the mode-truncation and disappears moving further be-
low threshold and in the continuous limit.

The article is organized as follows. In Section 2 we in-
troduce the continuous model used for the description of
the quantum DOPO dynamics. In Section 3 we define the
correlation function g2 in a way appropriate for the nu-
merical calculations. In Section 4 we show the results of
the numerical integration of the continuous model. In Sec-
tion 5 we introduce a truncated model with the minimal
number of modes to describe the square pattern. Section 6
is devoted to concluding remarks. Finally, in the Appendix
we explain the procedure we use to calculate numerically
the output field.

2 The model

We use the space dependent quantum Langevin equations
for the DOPO obtained in reference [3]. The system con-
sists in a χ(2) medium enclosed in a single port cavity with
plane mirrors pumped by a coherent, monochromatic field
of frequency 2ω. The pump power is partially converted
from the pump frequency (2ω) to the signal frequency ω.

The intracavity pump and signal fields are described by
the space-time dependent quantum operators A0(x, t) and
A1(x, t) respectively, where x represents a point in the
plane perpendicular to the direction of light propagation.

The Hamiltonian in the interaction picture is

H = Hf + Hint + Hext (1)

where the free propagation of the fields, including diffrac-
tion effects, is represented by

Hf = �γ0

∫
dxA†

0 (∆0 − a0∇2)A0

+ �γ1

∫
dxA†

1 (∆1 − a1∇2)A1. (2)

The constants γ0 and γ1 are the cavity damping rates for
the two fields; ∆0 = (ωc0−2ω)/γ0 and ∆1 = (ωc1−ω)/γ1

are the cavity detuning parameters (ωc0 and ωc1 are the
frequencies of the two longitudinal cavity modes closest to
2ω and ω). Parameters a0 and a1 are characteristic areas
that represent the strength of diffraction; and ∇2 is the
two dimensional transverse Laplacian which models the
effect of diffraction in the paraxial approximation.

The term Hint in equation (1) represents the nonlinear
interaction Hamiltonian

Hint =
i�g

2

∫
dx

(
A0A

†2
1 − A†

0A
2
1

)
, (3)

where g is the coupling parameter related to the nonlin-
earity of the medium. The third term in equation (1) rep-
resents the coherent and monochromatic external driving

Hext = i�
∫

dx
(
EinA

†
0 − E∗

inA0

)
, (4)

where Ein is the (scaled) plane wave pump field amplitude.
The reversible part of the dynamics is represented

by the Hamiltonian. The irreversible part is introduced
in the Liouvillian terms of the master equation for the
density matrix. The master equation can be turned into
a set of stochastic differential equations for c-number
fields α0(x, t) and α1(x, t) corresponding to the oper-
ators A0(x, t) and A1(x, t), in the Wigner representa-
tion [3,4,15,21]. The nonlinear Langevin equations are

∂α0

∂t
= −γ0(1 + i∆0 − ia0∇2)α0 + Ein − gα2

1/2

+
√

2γ0 ξ0 (5)
∂α1

∂t
= −γ1(1 + i∆1 − ia1∇2)α1 + gα0α

∗
1 +

√
2γ1 ξ1.

(6)

Variables ξ0 and ξ1 are white noise stochastic Gaussian
processes with zero average, and correlation

〈ξi(x, t) ξ∗i (x′, t′)〉 =
1
2
δ(x − x′)δ(t − t′)

for i = 0, 1. The noise terms are interpreted as vacuum
quantum noise entering through the partially transmitting
mirror.
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Equations (5, 6) can be numerically integrated to cal-
culate symmetrically ordered correlations as

〈A†
1(x, t)A1(x′, t′)〉sym =〈

A†
1(x, t)A1(x′, t′) + A1(x, t)A†

1(x
′, t′)

2

〉

= 〈α∗
1(x, t)α1(x′, t′)〉 . (7)

The c-number fields outside the cavity, αout
0 (x, t) and

αout
1 (x, t), corresponding to the operators Aout

0 (x, t) and
Aout

1 (x, t), can be numerically calculated following the
method introduced in [10]. The input-output relations

αout
i =

√
2γiαi − αin

i (8)

have to be discretized in order to include noise in the nu-
merical scheme. The input fields are

αin
0 = Ein/

√
2γ0 + ξ0 ; αin

1 = ξ1. (9)

Appendix A contains more details on the numerical im-
plementation of the evaluation of the output fields.

Neglecting fluctuations, equations (5, 6) have a homo-
geneous steady state solution given by

α1,s = 0, α0,s =
Ein

γ0(1 + i∆0)
· (10)

This steady state homogeneous solution (10) becomes un-
stable as the input field is increased, and a square pattern
with a critical wave number |kc| =

√−∆1/a1 appears if
∆0 < −2

√
3 [20]. The threshold value of the dimensionless

input field for the instability is

Ēthr =
Ethr

γ0
√

nph
=

√
1 + ∆2

0

where nph = γ2
1/g2 represents the number of pump pho-

tons per unit area that are needed to reach the threshold
for signal generation [15].

An analysis of the energy flux in the system can be
useful, as we will see in Section 5, to analyze fluctuation
correlations. The input and output intensities are

Iin = �2ω
∣∣αin

0

∣∣2 + �ω
∣∣αin

1

∣∣2
Iout = �2ω

∣∣αout
0

∣∣2 + �ω
∣∣αout

1

∣∣2 . (11)

Using the input-output relations (8), the net power inside
the cavity is

P =
∫

dx(Iin − Iout)

= 2�ω

∫
dx

[
2�(Einα∗

0) − 2γ0|α0|2 − γ1|α1|2
]
, (12)

where the terms with fluctuations ξi average to zero in the
transverse plane. This same quantity has been used in [23]
to characterise cavity soliton features in DOPO. Since P
represents an average over the transverse plane of the net
energy gain, its time average should be zero in any steady
state. In Section 5 we use a simplified model with 4 modes
to evaluate the consequences of equation (12).

3 The second order coherence function g2

The far field of the signal outside the cavity is represented
by the space Fourier transform, Aout

1 (k, t). The annihila-
tion operator of the signal field defined in a small interval
of wave-vectors and time, around (ki, ti), is

âi =
∫

Ri

dk
∫ ti+∆t

ti

dt
Aout

1 (k, t)√
R∆t

(13)

where Ri is the region of integration around ki, of size R,
and ∆t is the time interval [24]. We consider both R
and ∆t independent of i. The index i represents differ-
ent space-time points.

Using the commutation relation of the field outside the
cavity

[Aout(k, t), Aout†(k′, t′)] = δ(k − k′)δ(t − t′), (14)

it is easy to see that the annihilation and creation oper-
ators satisfy [âi, â

†
j ] = δi,j , where in our notation i = j

implies ki = kj and ti = tj .
The definition of the g2 function in terms of the cre-

ation and annihilation operators of the signal field outside
the cavity is

g2(ki, ti,kj , tj) =

〈
: â†

i â
†
j âj âi :

〉
〈
: â†

i âi :
〉 〈

: â†
j âj :

〉 , (15)

where 〈::〉 represents time and normal ordering. We need
to express g2 in terms of the symmetrically ordered aver-
ages that can be obtained numerically. We briefly describe
this process in the following.

First, we write g2 in terms of continuous operators
Aout

1 (k, t) using equation (13). We use the commutation
relation for the outside cavity field (14) to transform nor-
mally ordered averages into symmetrically ordered aver-
ages. For example, for the term in the denominator of
equation (15), we have

〈
: â†

i âi :
〉

=
1

R ∆t

∫
Ri

dk
∫ ti+∆t

ti

dt

∫
Ri

dk′

×
∫ ti+∆t

ti

dt′
〈
: Aout†

1 (k, t)Aout
1 (k′, t′) :

〉

=
1

R ∆t

∫
Ri

dk
∫ ti+∆t

ti

dt

∫
Ri

dk′
∫ ti+∆t

ti

dt′

×
〈
Aout†

1 (k, t)Aout
1 (k′, t′)

〉
sym

− 1
2
· (16)

We can now replace the symmetrically ordered aver-
ages by the averages of the numerically calculated c-
number fields, αout

1 (k, t). Considering that the integra-
tion region is small, we can use the approximation∫

Ri
dk

∫ ti+∆t

ti
dt αout

1 (k, t) � R∆t αout
1 (ki, ti), and〈

: â†
i âi :

〉
= R ∆t

〈|αout
i (ki, ti)|2

〉 − 1/2. (17)
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g2(ki, ti,kj , tj) =

���αout
1,i

��2 ��αout
1,j

��2�−
����αout

1,i

��2� +
���αout

1,j

��2�� (1 + δij)/2 + (1 + δij)/4����αout
1,i

��2�− 1/2
� ����αout

1,j

��2�− 1/2
� (18)

After these steps we find that equation (15) can be rewrit-
ten as

see equation (18) above

where we use the dimensionless quantity αout
1,i =√

R∆t αout
1 (ki, ti) to simplify the notation. Note that if

the statistics of αout
1,i and αout

1,j were independent then
g2(ki, ti,kj , tj) = 1, therefore a value of g2 larger (smaller)
than 1 indicates a positive correlation (anticorrelation) be-
tween αout

1,i and αout
1,j . For equal time and position the ex-

pression reduces to

g2(ki, ti,ki, ti) =

〈∣∣αout
1,i

∣∣4〉 − 2
〈∣∣αout

1,i

∣∣2〉 + 1/2(〈∣∣αout
1,i

∣∣2〉 − 1/2
)2 · (19)

4 The continuous model

We study the degenerate OPO described by equa-
tions (5, 6) close to the instability that produces a square
pattern. In the numerical calculations we use the param-
eters ∆0 = −4, ∆1 = −2, nph = 106/a1, 2a0 = a1 and
γ1 = γ0. Space and time are scaled with the values of a1

and γ1 respectively in order to use dimensionless quanti-
ties. The numerical method of integration that we used
involves a spectral integration of the diffraction part and
a second order Runge-Kutta method for the rest of the
equation [3].

The pump has a radially symmetric shape

Ein(r) = E0
in

[
1 + tanh

(
r0 − r

w

)]
/2

where r = |x|. This expression yields a large central re-
gion with a quite flat profile which decays at r = r0 with a
decay rate determined by w. This avoids periodic bound-
ary condition effects. We took r0 = 65.5 which is about
14.75 times the critical wavelength for pattern formation
and w = 0.667. We define the dimensionless pump maxi-
mum amplitude as

Ēin =
E0

in

γ0
√

nph
·

4.1 Results below threshold

Figure 1 shows an intracavity field snapshot just below
threshold, for a dimensionless input field value of Ēin =
4.119 = 0.999Ēthr. In the near field a disordered faint
pattern appears in the signal field while the intracavity

Fig. 1. Snapshot of the fields configuration just below thresh-
old, Ēin = 0.999Ēthr. First row: intracavity pump near field
intensity |α0(x)|2; and far field power spectra |α0(k)|2. Second
row: real part of the intracavity signal near field �(α1(x)),
and far field power spectra |α1(k)|2. The range of values
for the near field configurations are |α0(x)|2 ∈ [0, 1.12] and
�(α1(x)) ∈ [−0.012, 0.012]. A lattice of 256 × 256 points was
used.

pump field remains practically identical to the input pump
(notice the different scales given in the figure caption). The
ring in the far field of the signal has a radius equal to the
wave number that becomes critical above threshold. We
calculate the correlation of the fluctuations of the signal
modes on this critical ring. We chose a signal mode with
a given ki over the ring, at a time ti, and calculate the
correlation with any other signal mode with wavevector
kj over the ring, at time tj . The correlation function g2

is then a function of the angle between ki and kj and the
time difference td = ti − tj .

In Figure 2 we plot the g2 output field correlation func-
tion against the dimensionless scaled time γ1td and the an-
gle. Note that, as discussed in Section 3, a value of g2 = 1
corresponds to the uncorrelated case and what is relevant
is the deviation of g2 from g2 = 1. There are strong corre-
lations at angles 0 and π which decay exponentially with
the time difference and practically no correlation at any
other angle. A cut of Figure 2 for zero time difference is
shown in Figure 3 where again the 0 and π correlations
are seen while for the rest of the angles g2 ≈ 1. The corre-
lation at angle 0 corresponds to the signal far field mode
self-correlation while the one at angle π corresponds to the
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Fig. 2. Correlation function g2 between two signal modes with
critical wave number as function of the time difference td and
the angle (in radians) between the wave-vectors of the modes.
The pump value is just below the threshold for pattern forma-
tion Ēin = 0.999Ethr. g2 has been calculated using 11 400 sam-
ples separated a time interval γ1∆t = 1 in a lattice of 256×256
points.

correlation between signal modes with opposite wave vec-
tor. The correlation at angle π, also visible in the far field
of the signal in Figure 1, is also found when a stripe pat-
tern is formed. It can be understood from the linearized
equations in a similar way as in [3] and in [10,27] for a Kerr
cavity. Assuming a homogeneous constant pump field Ein

and linearizing equation (6) around the homogeneous so-
lution (10) we obtain in Fourier space

∂α1(k, t)
∂t

= −γ1(1 + i∆1 + ia1k
2)α1(k, t)

+ gα0,sα
∗
1(−k, t) +

√
2γ1ξ1(k, t). (20)

This equation shows a linear coupling between the am-
plitude of the signal field α1(k) with the amplitude with
opposite wave-vector α1(−k). The coupling comes from a
term that breaks the phase invariance of the equation for
α1 and its strength is proportional to the homogeneous
component of the pump field which always takes a large
value. This linear coupling originates strong correlations
in the intracavity signal modes with opposite wave-vectors
which are the responsibles for the output field correlations
measured by the function g2 at angle π. Therefore the ori-
gin of the correlations between signal modes with opposite
wave-number can be traced back to the symmetry break-
ing originated by the pump field. The π angle correlations
are present both below and above threshold. In the case
below threshold, it can be observed even for pump values
quite below threshold since the symmetry breaking origi-
nated by the pump is always present.

The π-angle correlation can be interpreted as an effect
of transverse momentum conservation in the parametric
down-conversion process. When a pump photon with fre-
quency 2ω interacts with the nonlinear medium and the
parametric down conversion is produced, two signal pho-
tons with frequency ω are generated. The two emitted
photons have opposite transverse wave-vectors due to mo-
mentum conservation.

angle

g
2

π/2 π

Fig. 3. Transverse cut of Figure 2 at t = 0.

Fig. 4. Snapshot of the signal field configuration above thresh-
old at an intermediate stage starting from random initial condi-
tions (γ1t = 2000, Ēin = 1.02Ēthr). Left: Real part of the near
field �(α1(x)) where the grayscale goes from −0.174 (black) to
+0.174 (white). Right: far field intensity |α1(k)|2. As in Fig-
ure 1 a lattice of 256 × 256 points was used.

The square form of the pattern above threshold sug-
gest the presence of correlations between signal modes
with wave vectors forming an angle of π/2. The presence
of such correlation below threshold would give us informa-
tion about the kind of pattern that is formed above thresh-
old. Equation (20) does not show any coupling between
the signal modes with wave-vectors forming a π/2 angle
thus indicating that there is no linear coupling between
these modes. Therefore below threshold correlations at a
π/2 angle could only come from nonlinear interactions,
and therefore could be seen only very close to threshold.
The numerical simulations at 0.999 the threshold value
do not show any correlation at π/2 that can be distin-
guished within our numerical accuracy (see Figs. 2 and 3).
Typically this is a value close enough to threshold to see
the correlations originated by nonlinear critical fluctua-
tions [27]. We will analyze the π/2 angle correlations in
more detail in Section 5 in the context of a model in which
the form of the pattern is assumed a priori.

4.2 Results above threshold

For pump values above threshold, starting from random
initial conditions a square pattern is formed in the cir-
cular region of the transverse plane where the pump is
above threshold (Fig. 4). The square pattern arises as a
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Fig. 5. Final stage of the signal field where a completely
ordered square pattern is formed above threshold (Ēin =
1.02Ēthr). Left: real part of the near field �(α1(x)) (grayscale
as in Fig. 4). Right: far field intensity |α1(k)|2. (A lattice of
256 × 256 points was used.)

consequence of spontaneous breaking of the radial sym-
metry, therefore the pattern can be oriented in any di-
rection [25,26]. For a large system and starting from ran-
dom initial conditions domains with different orientations
arise as shown in Figure 4. Over long time scales these
domains compete and at the very end one of them will ex-
tend through the entire system. Such a pattern is shown
in Figure 5, where a square pattern of small amplitude,
appropriate wavelength and oriented along the horizontal
and vertical directions plus noise was used as initial con-
dition in order to make the system converge to the final
stage in a short time. The snapshots show the signal field
for a value of the pump of Ēin = 4.2 = 1.02Ēthr, in the
near and far field.

Figure 6 shows the function g2 for correlations above
threshold at angle π (continuous lines) and at angle π/2
(dashed line). The correlation between opposite modes is
again a manifestation of the twin photon emission. The
anticorrelation between orthogonal modes is a new effect
that we found only above threshold, when the square pat-
tern is already formed. The reason why it is a negative
correlation (that in terms of the second-order coherence
means g2 < 1) is explained below in Section 5.1.

5 The 4 modes model

Let us consider the system above and close to the thresh-
old for square pattern formation. The signal field is pro-
jected onto 4 spatial modes forming a square approximat-
ing it by

α1 = A1eikcx + A2e−ikcx + A3eikcy + A4e−ikcy, (21)

where kc is the critical wave number of the instability (we
have chosen the coordinate axis oriented along the square
modes).

Due to the term α2
1 in equation (5), the modes

(±2kc, 0), (0,±2kc) and (±kc,±kc) of α0 will be excited,

so that

α0 = B0 + B1ei2kcx + B2e−i2kcx + B3ei2kcy + B4e−i2kcy

+ B5eikc(x+y) + B6e−ikc(x+y) + B7eikc(x−y)

+ B8e−ikc(x−y) (22)

with |Bi| � |B0| for i = 1...8. The homogeneous mode B0

is much larger than the Bi modes because it is related to
the input pump field, while the Bi modes are related to
the pattern modes Ai that, close to threshold, should be
small.

A system of 13 equations is obtained by replacing equa-
tions (21, 22) in equations (5, 6). The equations corre-
sponding to the signal modes are

dA1

dt
= −γ1(1 + i∆1 + ia1k

2
c )A1

+ g(B0A
∗
2 + B1A

∗
1 + B5A

∗
3 + B7A

∗
4) +

√
2γ1ξ1,1

dA2

dt
= −γ1(1 + i∆1 + ia1k

2
c )A2

+ g(B0A
∗
1 + B2A

∗
2 + B8A

∗
3 + B6A

∗
4) +

√
2γ1ξ1,2

dA3

dt
= −γ1(1 + i∆1 + ia1k

2
c )A3

+ g(B0A
∗
4 + B3A

∗
3 + B5A

∗
1 + B8A

∗
2) +

√
2γ1ξ1,3

dA4

dt
= −γ1(1 + i∆1 + ia1k

2
c )A4

+ g(B0A
∗
3 + B4A

∗
4 + B6A

∗
2 + B7A

∗
1) +

√
2γ1ξ1,4.

(23)

For the pump modes we have

dB0

dt
= −γ0(1 + i∆0)B0 + Ein − g(A1A2 + A3A4)

+
√

2γ0ξ0,0

dB1

dt
= −γ0(1 + i∆0 + ia04k2

c )B1 − gA2
1/2 +

√
2γ0ξ0,1

dB2

dt
= −γ0(1 + i∆0 + ia04k2

c )B2 − gA2
2/2 +

√
2γ0ξ0,2

dB3

dt
= −γ0(1 + i∆0 + ia04k2

c )B3 − gA2
3/2 +

√
2γ0ξ0,3

dB4

dt
= −γ0(1 + i∆0 + ia04k2

c )B4 − gA2
4/2 +

√
2γ0ξ0,4

dB5

dt
= −γ0(1 + i∆0 + ia02k2

c )B5 − gA1A3 +
√

2γ0ξ0,5

dB6

dt
= −γ0(1 + i∆0 + ia02k2

c )B6 − gA2A4 +
√

2γ0ξ0,6

dB7

dt
= −γ0(1 + i∆0 + ia02k2

c )B7 − gA1A4 +
√

2γ0ξ0,7

dB8

dt
= −γ0(1 + i∆0 + ia02k2

c )B8 − gA2A3 +
√

2γ0ξ0,8

(24)
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Fig. 6. Correlations above threshold (Ēin = 1.02Ēthr) ob-
tained from the continuous model. The figure shows the corre-
lation g2 between two signal modes with critical opposite wave
vectors (solid line) and with critical wave vectors forming a
π/2 angle (dashed line) as function of the time difference td.
To obtain a better statistics, a system of size 64×64 was used.
We averaged over 100 000 samples separated a time interval
γ1∆t = 0.5.

where ξi,j represent the Gaussian noise terms with corre-
lations

〈ξi,j(t)ξ∗i′,j′(t
′)〉 =

1
2

1
L2

δi,i′δj,j′δ(t − t′)

where L is the transverse size of the system.
Equations (23, 24) are the minimal model to describe

square patterns. Note that we can not neglect the second
harmonic contributions, Bi (i = 1...8), despite its small
amplitude in comparison with B0, because these modes
play an important role in the couplings above threshold.
As shown in equation (23) they are responsible for the
coupling between signal modes with wave vectors form-
ing a π/2 angle. Therefore 13 is the minimum number of
equations that we need to take into account.

5.1 Correlations above threshold

We first address the correlations above threshold given by
the 4 signal modes model. Above (but close to) threshold
of square pattern formation there are only four relevant
modes for the signal field, as can be seen in Figure 5 there-
fore this truncated model should reproduce adequately the
dynamics of the continuous model. An example of very
good agreement between the quantum correlations calcu-
lated numerically in a continuous model above threshold
and the correlations calculated from the equivalent re-
duced model can be found in reference [10], that deals
with a Kerr medium.

We integrate numerically the nonlinear equa-
tions (23, 24), including the noise terms, for a pump value
2% above threshold. Figure 7a shows the the numerical

Fig. 7. Correlations above threshold (Ēin = 1.02Ēthr) ob-
tained from the 4-mode model. Figure (a) shows the corre-
lation g2 between two signal modes with critical opposite wave
vectors (solid line) and with critical wave vectors forming a
π/2 angle (dashed line) as function of the time difference td.
Figure (b) shows the g2 correlation function between one of
the signal modes, A1, and the homogeneous component of the
pump field (B0). g2 has been calculated using 106 samples sep-
arated a time interval γ1∆t = 5.

results for the correlation function between two signal
modes with critical opposite wave vectors and with
critical wave vectors forming a π/2 angle as function
of the time difference td. There are strong positive
correlations at angle π, as obtained from the continuous
model which decay exponentially with the time difference.
There is also an anticorrelation between the modes with
wavevectors forming a π/2 angle, in agreement with the
result obtained for the continuous model.

These correlations can be understood from the lin-
earized equations for the fluctuations around the steady
state solution above threshold, Ai,s 	= 0 and Bi,s 	= 0,
which can be obtained finding the stationary solution
of the set of equations (23, 24). This leads to a system
of 13 coupled algebraic nonlinear equations that can be
solved numerically. Linearizing around this solution we
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have for the signal modes

dδA1

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA1+g(B0,sδA

∗
2 + A∗

2,sδB0

+ B1,sδA
∗
1 + A∗

1,sδB1 + B5,sδA
∗
3 + A∗

3,sδB5

+ B7,sδA
∗
4 + A∗

4,sδB7) +
√

2γ1ξ1,1

dδA2

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA2+g(B0,sδA

∗
1 + A∗

1,sδB0

+ B2,sδA
∗
2 + A∗

2,sδB2 + B8,sδA
∗
3 + A∗

3,sδB8

+ B6,sδA
∗
4 + A∗

4,sδB6) +
√

2γ1ξ1,2

dδA3

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA3+g(B0,sδA

∗
4 + A∗

4,sδB0

+ B3,sδA
∗
3 + A∗

3,sδB3 + B5,sδA
∗
1 + A∗

1,sδB5

+ B8,sδA
∗
2 + A∗

2,sδB8) +
√

2γ1ξ1,3

dδA4

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA4+g(B0,sδA

∗
3 + A∗

3,sδB0

+ B4,sδA
∗
4 + A∗

4,sδB4 + B6,sδA
∗
2 + A∗

2,sδB6

+ B7,sδA
∗
1 + A∗

1,sδB7) +
√

2γ1ξ1,4. (25)

This set of equations shows a linear coupling between the
fluctuations of modes separated by an angle π, such as
δA1 and δA2 or δA3 and δA4, and by an angle π/2 such
as for example between δA1 and δA3 or δA4. In the first
case the strength of the coupling is proportional to the ho-
mogeneous component of the intracavity pump field B0,s

while the π/2 angle coupling is mediated by the stationary
values of the pump field pattern modes Bi,s (i = 1 . . . 8).
This linear coupling will imply significantly large corre-
lations between the signal output field modes with wave
vectors forming a π and a π/2 angle as obtained numeri-
cally from the nonlinear equations (23, 24) and shown in
Figure 7.

An alternative way to explain the correlation above
threshold between the output signal far field modes form-
ing an angle π/2 can be obtained from the energy expres-
sion we derived at the end of Section 2. As above threshold
the square pattern is fully developed, we can approximate
|A1| � |A2| and |A3| � |A4|, so

α1 = A1 cos(kcx + φx) + A3 cos(kcy + φy). (26)

Replacing equations (26, 22) in equation (12), we get

P = 2�ωL2
[
2�(EinB∗

0) − 2γ0|B0|2 − γ1(|A1|2 + |A3|2)
]
,

(27)

where L is the transverse size of the system, and we have
neglected terms of order BiBj with i, j = 1...8. Since in
a steady state P have small fluctuations around zero, the
fluctuations of the quantities in the r.h.s. of equation (27)
must cancel. For example, a positive fluctuation of |A1|2
can be compensated by a negative fluctuation of |A3|2.

We have also calculated the correlation function g2

at the output between a mode of the signal (A1) and
the homogeneous mode of the pump (B0), that we call
g2(A1, t, B0, t

′). As shown in Figure 7 there is a small an-
ticorrelation at equal times which quickly decays as the

time difference increases. The linearized equations (25)
show also a coupling between δA1 and δB0 with a strength
proportional to A∗

2,s which can be considered the respon-
sible for this anticorrelation. Likewise, this anticorrelation
can be understood from equation (27).

The anticorrelations above threshold between orthog-
onal signal modes and between signal modes and pump
mode can be explained in terms of the possible photon
processes in the parametric down conversion. Let us con-
sider the system above threshold with a perfectly ordered
square pattern. When a pump photon with frequency 2ω
enters the cavity there can be mainly three processes:
(i) the photon leaves the cavity without interacting with
the medium. (ii) The photon interacts with the medium
via a parametric down conversion and two photons of fre-
quency ω leave the cavity and produce two spots in the
horizontal direction in the far field. (iii) Same as (ii) but
the two photons that leave the cavity are emitted in the
vertical direction. There are more complicated processes,
but we can neglect their relevance with respect to the three
mentioned. Each process has a probability to occur that is
proportional to the intensity of the spots in the far field.
Let us suppose that, for example, process (i) takes place.
Then, the photon gives all its energy to the homogeneous
pump mode, and nothing to the four signal modes. This
represents a positive fluctuation of the homogeneous pump
mode with respect to the average intensity, and a negative
fluctuation of the signal modes, giving rise to an anticor-
relation between signal and pump, as is seen in Figure 7b
(this argument holds also below threshold, where the sig-
nal modes form the critical circle). If, instead, process (ii)
takes place, the input photon gives all its energy to the
horizontal signal modes. There is a positive fluctuation
of the horizontal signal modes and a negative fluctuation
of the vertical signal modes and the homogeneous pump
mode with respect to the average intensity. Then, an an-
ticorrelation between horizontal and vertical signal modes
will take place, as seen in the plot of the correlation at an-
gle π/2 in Figures 6 and 7a. Analogous result is obtained
for process (iii).

The above arguments identify the origin of anticorre-
lations, however, they do not imply that these anticor-
relations are below a shot noise level. Therefore one has
to rely on the calculation to determine if the suggested
anticorrelations are in fact at a quantum level or not.

5.2 Correlations below threshold

We now address the question of the correlations just below
threshold (Ēin = 4.119 = 0.999Ēthr) given by the 4 modes
model (23, 24). Although the 4-modes model is a good
approximation of the continuous model only above and
close to threshold, we explore its use it to calculate the
correlations below threshold. The problem below thresh-
old is that this simplified model represents a truncated
version of the continuous model, where the infinite num-
ber of modes in the critical circle of the signal far field is
reduced to 4.
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Figure 8a shows the numerical results for the correla-
tion function between two signal modes with critical oppo-
site wave vectors and with critical wave vectors forming
a π/2 angle as function of the time difference td. As in
the case above threshold, there are strong positive corre-
lations at angle π, as obtained from the continuous model,
which decay exponentially with the time difference. The
new result is that there is also an anticorrelation between
the modes with wavevectors forming a π/2 angle.

The steady state solution below threshold is Ai,s = 0
(i = 1...4), Bi,s = 0 (i = 1...8), and only B0,s is different
from zero. If we linearize around this solution we get, for
the signal modes

dδA1

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA1+gB0,sδA

∗
2+

√
2γ1ξ1,1

dδA2

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA2+gB0,sδA

∗
1+

√
2γ1ξ1,2

dδA3

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA3+gB0,sδA

∗
4+

√
2γ1ξ1,3

dδA4

dt
= −γ1(1 + i∆1 + ia1k

2
c )δA4+gB0,sδA

∗
3+

√
2γ1ξ1,4,

(28)

which shows the presence of linear couplings between the
amplitude of the fluctuations of modes with opposite wave
vectors: δA1 and δA2 or δA3 and δA4. As in the linearized
continuous model (20) discussed in the previous section,
the strength of the coupling is proportional to the ho-
mogeneous mode B0,s which is always strong. This linear
coupling is responsible for the strong correlation found in
the g2 function between output signal modes with oppo-
site wave vector. Also, as in the continuous model there
is no coupling, in the linearized equations, between the
fluctuations of signal modes with wave vectors forming
a π/2 angle. Above threshold this coupling was propor-
tional to the amplitude of the pump pattern modes, which
is zero below threshold. The π/2 angle correlations come
from nonlinear interactions, and therefore can be seen only
very close to threshold. In fact we see them here because
we are just at 0.1% below threshold. This result is due to
the mode-truncation and disappears moving further below
threshold and in the continuous limit. For example, if we
consider an input field of Ēin = 0.9Ēthr, the correlations
at angle π remain strong while the nonlinear correlations
at π/2 vanish as shown in Figure 9a.

Finally we show in Figure 8 the correlation
g2(A1, t, B0, t

′) between the A1 mode of the signal, and the
homogeneous pump mode B0. As in the case above thresh-
old there is a small anticorrelation at equal times which
quickly decays as the time difference increases. Again there
is no coupling in the linearized equations (28) between the
signal mode and the pump mode fluctuations, so this cor-
relation comes from nonlinear interactions and it can be
observed only very close to threshold. As shown in Fig-
ure 9 this correlation vanishes for pump Ēin = 0.9Ēthr.

A final remark is that the correlations measured
through the function g2 just below threshold, can be
stronger than the ones above threshold (compare Fig. 8
with Fig. 7). This occurs even in the case of the π/2 corre-

Fig. 8. Correlations just below threshold Ēin = 0.999Ēthr ob-
tained from the 4-mode model. The upper figure shows the
correlation g2 between two signal modes with critical opposite
wave vectors (solid line) and with critical wave vectors forming
a π/2 angle (dashed line) as function of the time difference td.
The lower figure shows the g2 correlation function between one
of the signal modes, A1, and the homogeneous component of
the pump field (B0). g2 has been calculated using 106 samples
separated a time interval γ1∆t = 5.

lation which just below threshold appears only due to non-
linear effects while above threshold is generated by linear
couplings. This result can be understood taking into ac-
count the fact that the g2 function is normalized with the
mode intensities and the average intensity of the modes
just below threshold is much smaller than above it.

6 Final discussion and conclusion

We found three types of quantum correlations close to an
instability for square pattern formation in degenerate op-
tical parametric oscillators. First, a strong correlation be-
tween opposite wave-vector modes of the signal far field. It
is clearly present in both the continuous and the 4 modes
model and it can be understood as an effect of momentum
conservation in the parametric down conversion process
of one pump photon into two signal photons (twin photon
emission). Alternatively its origin can be related to the
phase symmetry breaking induced by the pump field sim-
ilar to what is obtained for a Kerr cavity [27]. The coupling
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Fig. 9. The same correlations obtained from the 4-mode model
as in Figure 8 but for Ēin = 0.9Ēthr.

between opposite wave-vector signal modes already ap-
pears in the linearized equations around the steady state,
both below and above threshold and therefore this cor-
relation appear either above or below threshold, and not
necessarily close to it. Quantum aspects of this correla-
tion were already studied, specially in the case of a stripe
pattern formation [3,4,28], and more recently in spatially
disordered structures [18].

Second, above threshold, we find anticorrelation be-
tween the signal field modes with critical wave vectors
forming an angle of π/2. This correlation can be explained
from the linearized equations above threshold which show
a direct coupling between the fluctuations of these modes.
Below threshold the amplitude of the pump field pattern
modes is zero and therefore in the linearized equations
there is no coupling between the fluctuations of the signal
modes with wave vectors forming a π/2 angle. In fact, pat-
tern selection is a nonlinear process, and the question of
which pattern is selected cannot be answered by a linear
analysis. Despite that, using the nonlinear 4 modes model,
one finds correlations between these modes for pump val-
ues extremely close to threshold (Ēin = 0.999Ēthr) which
come from the nonlinearities and are a manifestation of
critical fluctuations. These correlations quickly vanishes
decreasing the pump value. In the continuous model, how-

ever, we found numerically no correlations between the
signal modes emitted with wave vectors forming a π/2 an-
gle even extremely close to threshold (Ēin = 0.999Ēthr).
The statistics we have for the continuous model involve
11 400 samples and therefore the numerical result for the
g2 correlation has a limited precision. The result we obtain
for the correlation function g2 differs from 1.00 (uncorre-
lated case) in less than 0.03 which is within the limits
of the statistics. This is significatively different from the
value g2 = 0.92 obtained from the 4 mode model at the
same pump level. We believe that the π/2 correlations
obtained from the 4 mode model are over-magnified by
the reduction of the number of critical modes to 4 in the
signal field instead of considering the continuous ring of
critical modes |k| = kc. Therefore, we can not say that
the correlations between the fluctuations below threshold
do carry any information about the specific square form
of the pattern that arises above threshold. They are a
noisy precursor of the pattern in the sense that they tell
us about the critical wave number of the pattern but they
are not a quantum image of the pattern that shows what
kind of pattern is formed above threshold.

We also find an anticorrelation between the homoge-
neous pump mode and any of the critical signal modes.
Numerical results of the 4-modes model shows that it is
present above or below threshold. A similar anticorrelation
has been found in a Kerr medium [27]. Above threshold
this anticorrelation comes from linear coupling in the lin-
earized equations. Below threshold it is a manifestation
of non-linear critical fluctuations, and therefore it can be
observed only very close to threshold.

We want to stress that the analysis of the correlations
in terms of the linear couplings has the purpose of iden-
tifying which correlations have a linear origin, but all the
numerical results have been obtained with the full nonlin-
ear equations.

Finally, we note that our results are based on the
numerical evaluation of the second-order coherence func-
tion g2. The use of this function in the characterization
of quantum properties of spatially extended nonlinear op-
tical systems is far more general than the specific case
of square patterns studied here. The evaluation of the g2

function and a comparison with experimental result can
be beneficial when studying, for example, quantum cor-
relations between fluctuations around spatially localized
features such as domain walls and dark ring cavity soli-
tons [23].
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Appendix A: Numerical calculation of αout
i

The space-time evolution of αout
0 and αout

1 can be ob-
tained numerically using the method presented in [10].
We write equations (5, 6) for the intracavity fields as,
∂tαi = fi(α0, α1) +

√
2γi ξi, where the index i is 0 or 1.

We consider a discretized time t = nτ , where τ is a small
time step and n is an integer. At time nτ + s we have

αi(nτ + s) � αi(nτ) + fi(nτ) s +
√

2γi

∫ nτ+s

nτ

ξi(t) dt.

(A.1)

The average value of αi in the time interval nτ → nτ +τ is

αi,n =
1
τ

∫ τ

0

αi(nτ + s) ds

� αi(nτ) + fi(nτ)
τ

2
+

√
2γi

τ

∫ τ

0

ds

∫ nτ+s

nτ

ξi(t) dt

� αi(nτ) + αi(nτ + τ)
2

−
√

γi

2

∫ nτ+τ

nτ

ξi(t) dt

+
√

2γi

τ

∫ τ

0

ds

∫ nτ+s

nτ

ξi(t) dt. (A.2)

The space dependence is not explicitly written to sim-
plify the notation. Using the input-output relation αout

i =√
2γiαi − (Ei + ξi), where E0 = Ein/

√
2γ0 and E1 = 0, and

equation (A.2) we get the average value of the output field
at time step nτ

αout
i,n =

1
τ

∫ τ

0

αout
i (nτ + s) ds

=
√

2γi
αi(nτ) + αi(nτ + τ)

2
− Ei + ζi,n (A.3)

where ζi,n is the noise of the output field at time step nτ ;
it is related to the input noise ξi via the equation

ζi,n =
2γi

τ

∫ τ

0

ds

∫ nτ+s

nτ

ξi(s′)ds′

− 1 + γiτ

τ

∫ nτ+τ

nτ

ξi(s)ds. (A.4)

The previous equations hold for both near field and far
field, since they are linear. The correlations of ζi, in the
far field, are

〈ζi,n(k) ζ∗i,n′ (k′)〉 =
1
2τ

(
γ2

i τ2

3
+ 1

)
δnn′δ(k − k′) (A.5)

〈ζi,n(k) ξ∗i,n′ (k′)〉 = − 1
2τ

δnn′δ(k − k′) (A.6)

where ξi,n(k) = (1/τ)
∫ nτ+τ

nτ ξi(k, t) dt. The correlations
are fulfilled if we relate ζi,n to ξi,n as

ζi,n(k) = −ξi,n(k) +
γiτ√

3
σn(k) (A.7)

where σn(k) is a Gaussian noise with 〈σn(k)σ∗
n′ (k′)〉 =

(1/2τ)δnn′δ(k − k′).
In the numerical simulations we used τ equal to the

time step of the integration scheme.
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